blog.research.google/2023/10/google-search-can-now-help-with-english-speaking-practice.html
1 Users
0 Comments
10 Highlights
0 Notes
Tags
Top Highlights
English learners can now practice speaking on Search
Learning a language can open up new opportunities in a person’s life. It can help people connect with those from different cultures, travel the world, and advance their career. English alone is estimated to have 1.5 billion learners worldwide. Yet proficiency in a new language is difficult to achieve, and many learners cite a lack of opportunity to practice speaking actively and receiving actionable feedback as a barrier to learning. We are excited to announce a new feature of Google Search that helps people practice speaking and improve their language skills. Within the next few days, Android users in Argentina, Colombia, India (Hindi), Indonesia, Mexico, and Venezuela can get even more language support from Google through interactive speaking practice in English — expanding to more countries and languages in the future. Google Search is already a valuable tool for language learners, providing translations, definitions, and other resources to improve vocabulary. Now, learners translating to or from English on their Android phones will find a new English speaking practice experience with personalized feedback.
Learners are presented with real-life prompts and then form their own spoken answers using a provided vocabulary word. They engage in practice sessions of 3-5 minutes, getting personalized feedback and the option to sign up for daily reminders to keep practicing. With only a smartphone and some quality time, learners can practice at their own pace, anytime, anywhere.
Activities with personalized feedback, to supplement existing learning tools Designed to be used alongside other learning services and resources, like personal tutoring, mobile apps, and classes, the new speaking practice feature on Google Search is another tool to assist learners on their journey. We have partnered with linguists, teachers, and ESL/EFL pedagogical experts to create a speaking practice experience that is effective and motivating. Learners practice vocabulary in authentic contexts, and material is repeated over dynamic intervals to increase retention — approaches that are known to be effective in helping learners become confident speakers. As one partner of ours shared: "Speaking in a given context is a skill that language learners often lack the opportunity to practice. Therefore this tool is very useful to complement classes and other resources." - Judit Kormos, Professor, Lancaster University We are also excited to be working with several language learning partners to surface content they are helping create and to connect them with learners around the world. We look forward to expanding this program further and working with any interested partner.
Personalized real-time feedback Every learner is different, so delivering personalized feedback in real time is a key part of effective practice. Responses are analyzed to provide helpful, real-time suggestions and corrections. The system gives semantic feedback, indicating whether their response was relevant to the question and may be understood by a conversation partner. Grammar feedback provides insights into possible grammatical improvements, and a set of example answers at varying levels of language complexity give concrete suggestions for alternative ways to respond in this context.
Contextual translation Among the several new technologies we developed, contextual translation provides the ability to translate individual words and phrases in context. During practice sessions, learners can tap on any word they don’t understand to see the translation of that word considering its context.
This is a difficult technical task, since individual words in isolation often have multiple alternative meanings, and multiple words can form clusters of meaning that need to be translated in unison. Our novel approach translates the entire sentence, then estimates how the words in the original and the translated text relate to each other. This is commonly known as the word alignment problem.
The key technology piece that enables this functionality is a novel deep learning model developed in collaboration with the Google Translate team, called Deep Aligner. The basic idea is to take a multilingual language model trained on hundreds of languages, then fine-tune a novel alignment model on a set of word alignment examples (see the figure above for an example) provided by human experts, for several language pairs. From this, the single model can then accurately align any language pair, reaching state-of-the-art alignment error rate (AER, a metric to measure the quality of word alignments, where lower is better). This single new model has led to dramatic improvements in alignment quality across all tested language pairs, reducing average AER from 25% to 5% compared to alignment approaches based on Hidden Markov models (HMMs).
Semantic analysis A primary goal of conversation is to communicate one’s intent clearly. Thus, we designed a feature that visually communicates to the learner whether their response was relevant to the context and would be understood by a partner. This is a difficult technical problem, since early language learners’ spoken responses can be syntactically unconventional. We had to carefully balance this technology to focus on the clarity of intent rather than correctness of syntax.
ML-assisted content development Our available practice activities present a mix of human-expert created content, and content that was created with AI assistance and human review. This includes speaking prompts, focus words, as well as sets of example answers that showcase meaningful and contextual responses.
Glasp is a social web highlighter that people can highlight and organize quotes and thoughts from the web, and access other like-minded people’s learning.